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Abstract. A cross-diffusion model of an intraguild predation commu-
nity where the intraguild prey employs a fitness based avoidance strategy
is examined. The avoidance strategy employed is to increase motility
in response to negative local fitness. Global existence of trajectories
and the existence of a compact global attractor is proved. It is shown
that if the intraguild prey has positive fitness at any point in the habi-
tat when trying to invade, then it will be uniformly persistent in the
system if its avoidance tendency is sufficiently strong. This type of
movement strategy can lead to coexistence states where the intraguild
prey is marginalized to areas with low resource productivity while the
intraguild predator maintains high densities in regions with abundant
resources, a pattern observed in many real world intraguild predation
systems. Additionally, the effects of fitness based avoidance on eigen-
values in more general systems are discussed.

1. Introduction

Intraguild predation (IGP) describes a situation where a predator and
prey species also compete for a shared resource. It has been observed in
a variety of ecological communities including avian, both large and small
mammal, reptile, insect, fish and bacteria. In fact, any ecosystem with a
complex food web is likely to have examples of intraguild predation within
it. In [4] a database of 113 food webs was analyzed for presence of intraguild
predation and it was found to be present at high frequencies throughout.

One of the earliest attempts to rigorously model intraguild predation was
by Holt and Polis in [11] where basic ODE models were developed for a three
species community. One of the conclusions reached in [11] was that their
model with strong IGP was particularly prone to species exclusion, even
though communities with strong IGP appear to be widespread in nature.
Holt and Polis suggested numerous lines of future research on mechanisms
to stabilize coexistence states in IGP communities. One of these was to
allow for a heterogeneous environment.
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Numerous empirical studies have found cases where the intraguild prey
(IGPrey) employs nonrandom dispersal in foraging behaviors and habitat se-
lection in an apparent effort to reduce its risk of predation [9], [15],[18], [21],
[22], [25]. A common thread in these studies is that the intraguild predator
tends to concentrate in the highest quality parts of the habitat (measured
by basal resource productivity) while the intraguild prey will concentrate in
areas of marginal habitat quality in order to avoid the increased predation
pressure present in the higher quality areas. We propose a model where the
intraguild prey (IGPrey) employs a fitness based dispersal strategy that ac-
counts for local resource availability and predation risk. We assume that the
resource and intraguild predator (IGPredator) will disperse randomly. We
analyze what effects this non-random dispersal strategy has on the long-term
population dynamics and steady-state distributions of the community.

Amarasekare was the first to model IGP in a heterogeneous environ-
ment; first with random movement [5], and then with non-random move-
ment strategies (density, habitat and fitness dependent dispersal were all
considered) [6]. Both of these models use an environment consisting of 3
distinct patches, each with a different level of resource productivity. The
dynamic equations take the the form of an ODE for each species in each
patch. Due to the size of the system (9 equations) all conclusions were
based on numerical simulations. This work differs in that we take space to
be a continuous variable resulting in a 3-dimensional quasilinear parabolic
system of PDEs. We are able to prove the existence of a global attractor for
this system and derive conditions for the uniform persistence of the IGPrey.

There has been some past work modeling IGP communities that have
incorporated negative penalties from high IGPredator density into the func-
tional response terms of the IGPrey in an effort to model prey vigilance,
adaptive foraging, and other anti-predation behavior [12], [17]. These works
differ significantly from the model we propose below as they do not explic-
itly model space and hence do not allow the IGPrey to modify its movement
behavior in response to local conditions.

We will assume that the habitat, Ω, is a domain in R2 with smooth bound-
ary. We will use u(x, t) to denote the density of the resource species, v(x, t)
for the IGPrey and w(x, t) for the IGPredator. The system we consider is

∂u

∂t
= d1∆u+ f(x, u, v, w)u,

∂v

∂t
= ∆ [M(u,w)v] + g(u, v, w) v, (1)

∂w

∂t
= d3∆w + h(u, v, w)w

in Ω× (0,∞), subject to

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 on ∂Ω× (0,∞). (2)
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The per-capita growth rates (also referred to as fitness functions), f, g and
h are given by

f(x, u, v, w) = r(x)− ω1u−
a1v

1 + h1a1u
− a2w

1 + h2a2u+ h3a3v
, (3)

g(u, v, w) =
e1a1u

1 + h1a1u
− a3w

1 + h2a2u+ h3a3v
− µ1 − ω2v, (4)

h(u, v, w) =
e2a2u+ e3a3v

1 + h2a2u+ h3a3v
− µ2 − ω3w . (5)

The constants d1 and d3 are the motility of the resource and IGPredator
respectively. The function M(u,w) is the motility of the IGPrey. It is
assumed that the IGPrey changes its movement strategy based on the local
density of the resource as well as the IGPredator. We assume that M is
twice differentiable in u and w and there is a positive constant d such that

M(u,w) ≥ d > 0 for all u,w ≥ 0 . (6)

We will prove global existence of solutions to (1) without specifying a specific
form for M , but in Section 3 we will specify M after introducing the concept
of fitness based avoidance strategies. The function r(x) is the spatially
varying resource productivity which affects both resource growth rate and
carrying capacity. We assume that r(x) is Cα(Ω) for some α ∈ (0, 1) and that
r(x) > 0 on Ω. The parameters µ1 and µ2 are the natural mortality rates
of the IGPrey and IGPredator and ω1, ω2 and ω3 are self-limiting/crowding
coefficients for each species. The ai parameters are the attack rates, the hi’s
are the handling times and the ei’s are the conversion efficiencies of each
predation/consumption functional response. We will assume that ai, hi, ei,
µi, ωi and di are all positive for i = 1, 2, 3. The combined predation term in
(5),

e2a2u+ e3a3v

1 + h2a2u+ h3a3v
,

arises from assuming that the IGPredator will indiscriminately attack the
resource or IGPrey when encountered while searching and does not a priori
partition its search time between searching for resources and searching for
IGPrey.

Note that we have imposed Neumann conditions in (2). This is equivalent
to zero flux conditions (replacing ∂v

∂n = 0 with ∂
∂n (M(u,w)v) = 0 on ∂Ω).

Observe that

∂

∂n
(M(u,w)v) = M(u,w)

∂v

∂n
+ v

∂M

∂u

∂u

∂n
+ v

∂M

∂w

∂w

∂n
. (7)

We see from (7) that if ∂v
∂n = 0 in addition to the conditions already im-

posed on u and w then we will have zero flux for the v-component equation.
Conversely, in order to achieve zero flux in the v equation and maintain zero
flux in the u and w equations we would need to impose ∂v

∂n = 0.
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We will now prove that for nonnegative initial conditions in the Sobolev
space W 1,p(Ω) with p > 2, the system (1)-(2) has unique solutions that are
global (exist for t ∈ [0,∞)).

2. Global Existence and the Compact Global Attractor

Let [W 1,p(Ω)]3 be the space of triples, (u, v, w), in W 1,p(Ω) with norm

‖(u, v, w)‖[W 1,p(Ω)]3 = ‖u‖1,p + ‖v‖1,p + ‖w‖1,p.

For p > n we haveW 1,p(Ω) ↪→ C(Ω), so in this case we may define [W 1,p
+ (Ω)]3

to be the cone of nonnegative triples in [W 1,p(Ω)]3.
In [1], [2] and [3], Amann proved existence results for a class of quasilinear

parabolic equations that includes (1)-(2). Theorem 1 of [2] implies that for

initial conditions in [W 1,p
+ (Ω)]3 with p > n there is a unique classical solution

to (1)-(2) with a corresponding maximal interval of existence, J (which may
be [0,∞)). Theorem 3 of [2] implies that if the L∞-norms of all solution
components are bounded for t ∈ J , then the solution exists globally in
time, i.e. J = [0,∞). Standard comparison principles for single parabolic
equations with coefficients that depend on time and space can be applied to
these classical solutions to conclude that they remain nonnegative on Ω for
all t ∈ J (see [14]).

Le proved stronger results for a two component system with additional
assumptions bounding the growth of the flux and reaction terms in [13].
Le’s system included one component with cross-diffusion and one without.
We will use Theorem 2.2 of [13] to prove that for any initial conditions

in [W 1,p
+ (Ω)]3, p > 2, the system (1)-(2) has solutions that exist globally in

time. Furthermore, when viewed as a semiflow on [W 1,p
+ (Ω)]3 the system will

have a compact global attractor. In order to state this theorem, we need to
define the class of ultimately uniformly bounded functions in [W 1,p

+ (Ω)]3.

Definition 1. Let X be a complete metric space and ω : [0, b) × X → R
where b ∈ (0,∞]. We say that ω is ultimately uniformly bounded with respect
to X if there exists a function C0 : R+ → R+ such that

|ω(t, x)| ≤ C0(‖x‖X) for all (t, x) ∈ [0, b)×X;

and furthermore, if b =∞ there exists a constant C∞ such that

lim sup
t→∞

|ω(t, x)| ≤ C∞ for all x ∈ X.

Let P be the set of ultimately uniformly bounded functions with respect
to [W 1,p

+ (Ω)]3.
For the two component system in [13], Le showed that if the Ln-norm of

the component with cross-diffusion is in P and the L∞-norm of the compo-
nent without cross-diffusion is in P, then solutions exist globally and there
exists an α > 0 such that the C1+α(Ω) norm of each component is also in
P. Although (1)-(2) has three components, Le’s main result, Theorem 2.2
of [13], generalizes to this system (the key element being that at least one
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of the components is a standard reaction-diffusion equation with no density
dependence in the flux).

Applying Theorem 2.2 of [13] requires that the reaction terms satisfy
conditions analogous to condition (H.2) in [13]. For (1)-(2) this means we
must have a continuous function C(u,w) such that

|u f(x, u, v, w)| ≤ C(u,w)(1 + v) , (8)

g(u, v, w)vp+1 ≤ C(u,w)(1 + vp+1) , (9)

|w h(u, v, w)| ≤ C(u,w)(1 + v) . (10)

Returning to (3)-(5) we see that these conditions are satisfied since v does
not appear in any term of (3) or (5) with an exponent greater than one and
the term involving v in (4) is negative. Note that these growth conditions
would also be satisfied for Lotka-Volterra functional response terms (i.e.
hi = 0 for i = 1, 2, 3) in (3)-(5).

Solutions to (1)-(2) with initial conditions in [W 1,p
+ (Ω)]3 are twice differ-

entiable in space for t ∈ J̊ , hence for any Banach space X with C2(Ω) ↪→ X,
we can view the solution norms in X, ‖u(·, t)‖X , ‖v(·, t)‖X and ‖w(·, t)‖X ,

as functions from J× [W 1,p
+ (Ω)]3 to R, and talk about these norms belonging

to P. To keep the notation compact, we will write ‖u‖X (or ‖u(t)‖X when
the time variable needs explicit mention) instead of ‖u(·, t)‖X to indicate
these functions. In order to apply Theorem 2.2 of [13] to system (1)-(2), we
need to prove that ‖u‖∞, ‖v‖2 and ‖w‖∞ ∈ P.

The u and w component equations involve only standard diffusion op-
erators so comparison principles for parabolic equations can be effectively
utilized. Because the predation terms of the u equation in (1) are nega-
tive, the u component of a solution to (1)-(2) is a subsolution to the logistic
diffusion equation

∂û

∂t
= d1∆û+ r(x)û− ω1û

2 in Ω,
∂û

∂n
= 0 on ∂Ω. (11)

Let r = maxx∈Ω r(x). A well known result (see [8]) for (11) is

lim sup
t→∞

û(x, t) ≤ r

ω1
for all x ∈ Ω,

hence ‖u‖∞ ∈ P. The same reasoning applies to ‖w‖∞ upon noting that

∂w

∂t
≤ d3∆w +

(
e2

h2
+
e3

h3
− µ1

)
w − ω3w

2 in Ω. (12)

It is worth noting that establishing this ‖w‖∞ bound is the only place where
it is necessary to have a saturating functional response. The analyses of this
paper remain valid with h1 and h2 = 0; however, it is required that h3 > 0
to bound w before establishing an upper bound on v.

The main difficulty comes in proving ‖v‖2 ∈ P. We can adopt the ar-
gument used to prove Theorem 3.1 of [13] to establish this bound. The
system Le considered as the subject of Theorem 3.1 was a two component
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Lotka-Volterra competition system with logistic self-limiting on both terms.
The important properties of our system that let the argument carry over
are that the IGPrey has a logistic self-limiting term and that we are able to
establish the L∞ bounds on u and w prior to bounding v. We will now give
a brief outline of the proof of ‖v‖2 ∈ P for our system.

First we establish that ‖v‖1 and
∫ t+1
t ‖v(s)‖22 ds are both in P using the

same method as Lemma 3.3 of [13] (where the IGPrey self-limiting plays a
critical role). We will use the Uniform Gronwall Lemma as found in [24] to

pass from
∫ t+1
t ‖v(s)‖22 ds ∈ P to ‖v‖2 ∈ P; but first, we must establish an

inequality of the form

d

dt

∫
Ω
v(x, t)2 dx ≤ η1(t)

∫
Ω
v(x, t)2 dx+ η2(t) for all t ≥ t0 (13)

for some t0 > 0, where η1(t), η2(t) that satisfy
∫ t+1
t η1(s) ds,

∫ t+1
t η2(s) ds ∈

P. Manipulations analogous to equations (3.6)−(3.10) of [13] will yield such
an inequality with η1(t) = C(‖∇u‖44 + ‖∇w‖44) and η2(t) = C(1 + ‖∇u‖24 +
‖∇w‖24). To arrive at this bound Gagliardo-Nirenberg inequalities (as found
in [16]) are used, which depend on the dimension of the domain Ω and are
valid in this case for n ≤ 2.

It is then left to show that
∫ t+1
t ‖∇u(s)‖44 ds and

∫ t+1
t ‖∇w(s)‖44 ds ∈ P.

This is accomplished by applying a second Gagliardo-Nirenberg inequality
(again using the fact that n ≤ 2) to bound ‖∇u‖44 in terms of ‖∆u‖22 and
other Lp norms of u already shown to be in P. To this end, we need∫ t+1
t ‖∆u‖22ds ∈ P. To show

∫ t+1
t ‖∆u‖22ds ∈ P, we can trace the steps

of Lemma 3.4 in [13] and first prove that ‖∇u‖2 ∈ P and then use this

to establish
∫ t+1
t ‖∂u∂t (s)‖22 ds ∈ P. Then, rearranging the u component

equation of (1) and integrating over Ω and from t to t+ 1 yields∫ t+1

t

∫
Ω

(d1∆u)2 dx ds =

∫ t+1

t

∫
Ω

(
∂u

∂t
− u f

)2

dx ds

≤ 2

∫ t+1

t

∥∥∥∥∂u∂t (s)

∥∥∥∥2

2

ds+ 2

∫ t+1

t
‖u(s)f(s)‖22 ds .

(14)

From the bound (8) on the size of |u f(x, u, v, w)| and the fact that ‖u‖∞
and ‖w‖∞ ∈ P there exists an η(t) ∈ P such that∫ t+1

t
‖u(s)f(s)‖22ds ≤ η(t)

∫ t+1

t
‖1 + v(s)‖22ds . (15)

We have already established that ‖v‖1 and
∫ t+1
t ‖v(s)‖22ds ∈ P, therefore∫ t+1

t ‖u(s)f(s)‖22ds ∈ P. We then conclude from (14) that
∫ t+1
t ‖∆u‖22ds ∈

P and hence
∫ t+1
t ‖∇u‖44ds ∈ P. The same argument is then used to show∫ t+1

t ‖∇w‖44ds ∈ P. Finally, the Uniform Gronwall Lemma can be applied
to inequality (13) to conclude that ‖v‖2 ∈ P.
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Theorem 1. Let (u(x, t), v(x, t), w(x, t)) be the unique classical solution to

(1)-(2) with initial conditions in [W 1,p
+ (Ω)]3. This solution exists for all

t ≥ 0 and, furthermore, there exists an α > 0 such that

‖u‖C1+α(Ω), ‖v‖C1+α(Ω), and ‖w‖C1+α(Ω) ∈ P. (16)

The system (1)-(2) defines a semiflow on [W 1,p
+ (Ω)]3 and this semiflow pos-

sesses a compact global attractor.

Proof. The a priori bounds established above allow us to apply Theorem 2.2
of [13] to conclude global existence of solutions and (16). In light of global

existence of solutions, the system defines a semiflow, π(·, t), on [W 1,p
+ (Ω)]3

by Theorem 1 of [2]. Because C1+α(Ω) compactly embeds in C1(Ω) which
continuously embeds in [W 1,p(Ω)]3, (16) implies that the semiflow is point
dissipative. Also from Theorem 1 of [2], the operator π(·, t) is a continuous

map into [C2(Ω)]3 and hence a compact operator into [W 1,p
+ (Ω)]3 for any

t > 0. The classic result of Billotti and LaSalle [7] on the existence of global
attractors can then be applied. �

3. Fitness Based Avoidance Strategies for Intraguild Prey

3.1. Motility Functions Modeling Avoidance. In this section we set
forth conditions that define a class of motility functions, M(u,w), that model
the intraguild prey employing a fitness based avoidance strategy, i.e. avoid-
ing areas with a bad resource/predation risk trade-off. We then establish a
sufficient condition based on this class of motility functions for the IGPrey
to be uniformly persistent in the system (asymptotically bounded above and
below by a positive constant that does not depend on initial conditions). We
will assume that the IGPrey is able to assess the local density of resources
and frequency of predator attacks. Both of these assumptions are reasonable
for a variety of species [9], [18], [22], [25]. The IGPrey will use the resource
availability and frequency of predator attacks as a way of judging the local
environmental quality and increase its motility in regions that it judges to
be bad while maintaining a lower base level of motility (or perhaps even
decreasing it) in regions that it judges to be good.

The per capita growth rate (fitness) function, g(u, v, w), is a good can-
didate to represent the IGPrey’s assessment of local environmental quality.
Where g is positive, the abundance of resources outweighs any present pre-
dation risk (good areas) and where g is negative, the resources are not
sufficient to warrant the risk (bad areas). However, because of the logis-
tic self limiting term, g depends on the local intraspecific density v, and
so we cannot choose M = M(g) within the framework we have developed
thus far. Instead, we will use the function g∗(u,w) = g(u, 0, w) and assume
M(u,w) = M(g∗(u,w)). The main thrust of our analysis deals with the
case when the IGPrey is rare and invading the system, so this should be a
good approximation to the actual fitness in these cases. We will refer to g∗

as the IGPrey’s linearized fitness.
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We will use an additional parameter, λ, to represent the degree to which
the IGPrey is employing this avoidance strategy. More precisely, we will
consider a family of motility functions, {Mλ(g∗)}λ≥0 such that

d2 ≥ Mλ(g∗) ≥ d for all λ and g∗ ≥ 0, (17)

Mλ(g∗) ≥ d2 for all λ and g∗ < 0 and, (18)

lim
λ→∞

Mλ(g∗) =∞ for all g∗ < 0. (19)

Condition (19) states that when the linearized fitness is negative, λ increas-
ing toward infinity will result in ever higher motility for the IGPrey. In this
sense, higher values of λ make the IGPrey increase its avoidance response
to areas that it judges to be bad. We also require that Mλ is twice differ-
entiable with respect to g∗ for all λ ≥ 0, which implies from (17) and (18)
that Mλ(0) = d2 for all λ.

3.2. Acylclicity Argument for Uniform Persistence. Let Y denote
[W 1,p

+ (Ω)]3, π the semiflow on Y induced by (1)-(2), and A the global at-
tractor in Y that was shown to exist in Theorem 1. In order to study the
asymptotic dynamics of π it suffices to examine orbits originating in a small
neighborhood of A denoted by B(A, ε). Write Y̊ for the interior of Y , i.e.

triples of strictly positive functions on Ω, and ∂Y̊ for its boundary, nonneg-
ative triples where at least one function is zero at some point in Ω. Take
t1, t2 > 0 and set

X̃ = π(B(A, ε), t1), X = π(X̃, t2),

and S = X ∩ ∂Y̊ . Then X,S and X \ S are compact and forward invariant
under π (see Theorem 4.1 of [8]). By virtue of the maximum principle for
single parabolic equations, S consists of elements of X where at least one
component is identically zero on all of Ω, and X \ S consists of strictly
positive functions.

We will derive a condition for uniform persistence of the IGPrey by con-
sidering its ability to invade the system when absent. Define Suw to be the
subset of S where v ≡ 0 and Auw to be A∩Suw. To investigate the structure
of Auw we need to examine the u− w subsystem

∂u

∂t
= d1∆u+ u

(
r(x)− ω1u−

a2w

1 + h2a2u

)
∂w

∂t
= d3∆w + w

(
e2a2u

1 + h2a2u
− µ2 − ω3w

)
in Ω× (0,∞) , (20)

∂u

∂n
=
∂w

∂n
= 0 on ∂Ω× (0,∞) .

This is a standard system of the type considered in [8], Section 4.5. This
system has two boundary equilibria: (u∗, 0) and (0, 0) where u∗(x) is the
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unique positive solution of the diffusive logistic (steady-state) equation

0 = d1∆u+ u (r(x)− ω1u) in Ω,
∂u

∂n
= 0 on ∂Ω. (21)

Any initial condition of the form (u0, 0), u0 not identically zero, converges to
(u∗, 0); whereas, any initial condition of the form (0, w0) converges to (0, 0).
Furthermore, if the principal eigenvalue, σ1, of

d3∆w1 +

(
e2a2u

∗

1 + h2a2u∗
− µ2

)
w1 = σ1w1 in Ω,

∂w1

∂n
= 0 on ∂Ω (22)

is positive, then this subsystem is permanent and there exists a compact
invariant set, A1, that is bounded away from the boundaries and attracts all
initial data of the form (u0, w0), neither u0 nor w0 identically zero. However,
if the principal eigenvalue σ1 is negative, then (u∗, 0) attracts all such initial
data of the subsystem.

Therefore, we have Auw = {(0, 0, 0), (u∗, 0, 0)}∪A1 (using the convention
A1 = ∅ in the case of σ1 < 0). We will now establish some lemmas that will
be useful in proving our main result.

For a point x ∈ X and a set U ⊆ X define the distance from x to U in
the standard way

d(x, U) = inf
x′∈U
‖x− x′‖X .

If U is a compact invariant subset of X, we define the stable set of U , W s(U),
by

W s(U) = {u ∈ X | ω(u) 6= ∅, ω(u) ⊆ U} (23)

and the unstable set of U by

W u(U) = {u ∈ X | ω(u) 6= ∅, α(u) ⊆ U} . (24)

The compactness of U implies that if x ∈WS(U) then

lim
t→∞

d(π(x, t), U) = 0.

Lemma 1. Let U ⊆ Suw be a compact set. Suppose there exists a continuous

function b(x) such that b(x) ≤ g(u,0,w)
M(u,w) for all (u, 0, w) ∈ U and the principal

eigenvalue σ2 of

∆v2 + b(x) v2 = σ2 v2 in Ω,
∂v2

∂n
= 0 on ∂Ω , (25)

is positive. Then W s(U) ∩ (X \ Suw) = ∅.

Proof. Suppose there is a (u0, v0, w0) ∈ X \ Suw such that

lim
t→∞

d ((u(t), v(t), w(t)), U) = 0 .

Choose ξ > 0 such that

b(x) ≤ g(u, v, w)

M(u,w)
+
σ2

2
(26)
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for all (u, v, w) ∈ B(U, ξ). Take t0 such that d ((u(t), v(t), w(t)), U) ≤ ξ for
all t > t0. Multiply the v component equation of (1) by v2 and multiply
(25) by M(u,w)v and integrate over Ω to obtain

d

dt

∫
Ω
v2v dx =

∫
Ω
v2∆[M(u,w)v] dx+

∫
Ω
v2v g(u, v, w) dx (27)

and∫
Ω
M(u,w)v∆v2 dx+

∫
Ω
M(u,w)b(x)v2v dx− σ2

∫
Ω
M(u,w)v2v dx = 0 .

(28)
Apply the divergence theorem twice to the first term in (28) and subtract
(28) from (27) to get

d

dt

∫
Ω
v v2 dx = σ2

∫
Ω
M(u,w)v v2 dx+

∫
Ω

(g(u, v, w)− bM(u,w)) v v2 dx .

From (26) we have that g(u, v, w)−bM(u,w) ≥ −σ2M(u,w)
2 for all t > t0, and

we have also assumed that M is such that M(u,w) ≥ d > 0 for all u,w ≥ 0.
Because v0 ∈ X \ Suw, we have v(x, t) > 0 on Ω× (0,∞), and v2 being the
principal eigenfunction of (25) means that v2(x) > 0 on Ω, so

d

dt

∫
Ω
v v2 dx ≥

dσ2

2

∫
Ω
v v2 dx. (29)

We conclude that ‖v v2‖1 → ∞ as t → ∞. However, ‖v v2‖1 ≤ ‖v‖∞‖v2‖1
and ‖v2‖1 is constant in time, so ‖v‖∞ →∞, and furthermore, ‖v‖1,p →∞.
This contradicts (u, v, w) ∈ B(U, ξ), so W s(U) ∩ (X \ Suw) = ∅. �

Utilizing the fitness based avoidance strategy, M = Mλ(g∗(u,w)), we
will derive conditions that guarantee a b(x) satisfying the requirements of
Lemma 1 exists. Given any U that is a compact subset of [C(Ω)]3, define

g∗
U

(x) = min
(u,0,w)∈U

g∗(u(x), w(x)) (30)

and

bλ,U (x) = min
(u,0,w)∈U

g∗(u(x), w(x))

Mλ(g∗(u(x), w(x)))
. (31)

These functions are both continuous on Ω by the following Lemma:

Lemma 2. Suppose U is a compact subset of [C(Ω)]n and φ : Rn → R is a
continuous function. Then, the function F : Ω→ R defined by

F (x) = min
f∈U

φ(f(x))

is continuous.

Proof. F is well-defined (the minimum is obtained by using a function in
U at each point in Ω) because U is compact and uses the max-norm. Fix
x0 ∈ Ω and suppose F is not continuous at x0. Then there is an ε > 0 and
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a sequence {xn}∞n=1 ⊆ Ω such that xn → x0 and |F (xn)− F (x0)| > ε for all
n. Let {fn} ⊆ U be such that

F (xn) = φ(fn(xn)), for n = 0, 1, . . .

There is a subsequence, {fnk} that converges in [C(Ω)]n to a function f̂ ∈ U .
Choose K sufficiently large so that

|φ (f0(xnk))− F (x0)| < ε for all k ≥ K, (32)∣∣∣φ(f̂(xnk))− φ(f̂(x0))
∣∣∣ < ε

2
for all k ≥ K, (33)

and ∣∣∣φ(f̂(xnk))− F (xnk)
∣∣∣ < ε

2
for all k ≥ K. (34)

Fix k ≥ K. Suppose F (xnk) > F (x0) + ε. Then (32) implies that

φ(f0(xnk)) < F (xnk) (35)

which contradicts the minimality of F (xnk) for f ∈ U . Now, suppose
F (x0) > F (xnk) + ε. Then (33) and (34) imply that

φ(f̂(x0)) < F (x0) (36)

which contradicts the minimality of F (x0) for f ∈ U .
Therefore, we must have that F (x) is continuous on Ω. �

With an eye towards using bλ,U (x) in Lemma 1, we would like to have
a sufficient criteria for σ2 in (25) to be positive. This is provided by the
following Lemma:

Lemma 3. Let U ⊆ Suw be a compact set, g∗
U

(x) be given by (30) and

bλ,U (x) given by (31). Define Ω1 = {x ∈ Ω | g∗
U
> 0}. If (1)-(2) is such

that Ω1 has positive measure and {Mλ}λ≥0 satisfies (17) - (19), then there
exists a Λ such that

∫
Ω bλ,U (x) dx > 0 for all λ ≥ Λ.

Proof. Define Ω2 = Ω \ Ω1. Note that sgn(bλ,U (x)) = sgn(g∗
U

(x)) so if

|Ω2| = 0, we can stop now because bλ,U > 0 almost everywhere. Because U

is bounded in C(Ω) and g∗ is continuous, there exists a K > 0 such that
g∗(u,w) ≥ −K for all (u, 0, w) ∈ U , so Ω2 = {x ∈ Ω | −K ≤ g∗

U
≤ 0}.

Break
∫

Ω bλ,U dx into contributions from Ω1 and Ω2 and analyze each piece
separately.

Since |Ω1| > 0 there exists a positive integer, k, such that |Ω1,k| > 0 where

Ω1,k = {x ∈ Ω1 | g∗U >
1
k}. By (17) we have∫

Ω1

bλ,U (x) dx ≥ 1

d2

∫
Ω1

g∗
U

(x) dx ≥
|Ω1,k|
d2k

≡ C > 0 . (37)

For any δ ∈ (0,K) and x ∈ Ω2 we have

bλ,U (x) ≥ min
r∈[−K,0]

r

Mλ(r)
≥ min

r∈[−K,−δ]

r

Mλ(r)
+ min
r∈(−δ,0]

r

Mλ(r)
(38)
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so ∫
Ω2

bλ,U (x) dx ≥ |Ω2|
(

min
r∈[−K,−δ]

r

Mλ(r)
+ min
r∈(−δ,0]

r

Mλ(r)

)
. (39)

Now, choose δ such that
δ

d2
<

C

2|Ω2|
and then choose Λ such that

K

Mλ(r)
<

C

2|Ω2|
for all λ ≥ Λ and r ∈ [−K,−δ]. Such a Λ exists because limλ→∞Mλ(r) =∞
for each r ∈ [−K,−δ] and this interval is compact. Consequently,∫

Ω2

bλ,U (x) dx > −C

when λ ≥ Λ and therefore
∫

Ω bλ,U (x) dx > 0. �

We now present our main result.

Theorem 2. Suppose {Mλ}λ≥0 satisfies (17) - (19) and, (u∗, 0, 0) and A1

are as defined above. If there exists an x0 ∈ Ω such that g∗(u(x0), w(x0)) > 0
for all (u, 0, w) ∈ {(u∗, 0, 0)} ∪ A1 and M(u,w) = Mλ(g∗(u,w)) for suffi-
ciently large λ, then v will be uniformly persistent in (1)-(2) for all initial
conditions, (u0, v0, w0) with neither u0 nor v0 identically zero.

Proof. If U1 and U2 are two compact invariant subsets of S, we will say that
U1 is chained to U2 in S and write U1 → U2 if there exists a u ∈ S \(U1∪U2)
such that u ∈ W u(U1) ∩ W s(U2), i.e. there is a full orbit, γ(u), passing
through u with that connects to U1 as t → −∞ and connects to U2 as
t → ∞. We say a collection of compact invariant sets, {U1, . . . , Um} forms
a chain if

U1 → U2 → . . .→ Um ,

and we say the collection forms a cycle if Um = U1.
Dissecting the proof the acyclicity theorem of [10], we can derive the

following sufficient condition for v to be uniformly persistent in (1)-(2) for
all initial data with neither u0 nor v0 identically zero. This will be the case
if all of the following are true:

(1) No subset of C = {(0, 0, 0), (u∗, 0, 0),A1} can form a cycle in S.
(2) No isolated compact invariant set in A ∩ (S \ Suw) is chained to an

element of C.
(3) W s(M) ∩ (X \ S) = ∅ for all M ∈ C.

Addressing item (1): no subset of the three isolated components of Auw
can be chained together in Suw to form a cycle. We have (0, 0, 0)→ (u∗, 0, 0),
and if A1 is not empty we also have (0, 0, 0)→ A1 and (u∗, 0, 0)→ A1; but,
that is all of the existing chains, none of which can be linked to form a cycle.

To address item (2), consider the case when w0 ≡ 0. Let Suv be the
subset of S where w ≡ 0. Applying the acyclicity theorem of [10] to the
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u − v subsystem, we see that it will be permanent as long as W s((u∗, 0))
does not intersect the interior of Suv (the subset of Suv where u and v are
strictly positive). Applying analogues of Lemma 1 and Lemma 3 to

bλ(x) =
g∗(u∗(x), 0)

Mλ(g∗(u∗(x), 0))

guarantees that this is the case for λ sufficiently large. Therefore, there is
a compact subset, A2, in the interior of Suv that attracts all initial data of
the form (u0, v0, 0), neither u0 nor v0 identically zero.

Now, consider what happens for initial data with u0 ≡ 0. The resulting
subsystem is

∂v

∂t
= ∆ [M(0, w)v]−

(
µ1 + ω2v +

a3w

1 + a3h3v

)
v

∂w

∂t
= d3∆w +

(
e3a3v

1 + a3h3v
− µ2 − ω3w

)
w in Ω× (0,∞) , (40)

∂v

∂n
=
∂w

∂n
= 0 on ∂Ω× (0,∞) .

Even though the reaction terms in the first equation of (40) are always
strictly negative, the nonlinear diffusion prevents us from using a comparison
principle argument to conclude that solutions converge to (0, 0, 0). Instead,
multiply the first equation in (40) by e3, add it to the second equation and
integrate over Ω (applying the divergence theorem to eliminate the Laplacian
terms) to obtain

d

dt

∫
Ω

(e3v + w) dx = −
∫

Ω

(
µ1e3v + ω2e3v

2 + µ2w + ω3w
2
)
dx .

We can drop the quadratic terms from the right hand side and set k =
min{µ1, µ2} to get the inequality

d

dt
‖e3v + w‖1 ≤ −k‖e3v + w‖1 , (41)

and then conclude that ‖e3v+w‖1 → 0 as t→∞, hence ‖v‖1, ‖w‖1 → 0 in-
dividually. The semiflow restricted to S, πS(·, t) is compact for t > 0, so for
any sequence {tn} with tn →∞, the sequence of solutions to (40) evaluated
at these points in time, {(0, vn, wn)}, has a convergent subsequence in S.
However, from (41) we know that this convergent subsequence must be con-

verging to (0, 0, 0) in
[
L1(Ω)

]3
which implies that it is converging to (0, 0, 0)

in S as well. Since every sequence of solution points has a subsequence
converging to (0, 0, 0) in S, the solution trajectory must be converging to
(0, 0, 0) in S as well.

Therefore, the only isolated component of A∩(S \ Suw) is A2 (the interior
global attractor for the u−v subsystem) which is not chained to any element
of C in S. Hence condition (2) is satisfied.
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Using Lemma 1 and Lemma 3 with U = (u∗, 0, 0) ∪ A1,

bλ,U (x) = min
(u,0,w)∈U

g∗(u(x), w(x))

Mλ(g∗(u(x), w(x)))

and λ sufficiently large yields W s(M) ∩X \ S = ∅ for M ∈ {(u∗, 0, 0),A1}.
A standard argument that only considers the u-component can be used to
show that W s((0, 0, 0))∩X \S = ∅ (see [8] for an example). Thus condition
(3) is satisfied and we can conclude that the IGPrey is uniformly persistent
for initial data with neither the resource nor the IGPrey densities identically
zero. �

Theorem 2 can be viewed from an ecological perspective as saying that as
long as the intraguild prey has one location in its habitat where conditions
are favorable for all asymptotically feasible resource-IGPredator configura-
tions, then applying a strong fitness based avoidance strategy will allow it
to be uniformly persistent in the ecosystem.

This result is somewhat analogous to the well known result for a ran-
domly diffusing species that as long as there is a point in the domain where
linearized fitness is positive, then a species can invade provided its random
diffusion rate is sufficiently small. However, the mechanisms are in fact quite
different. In the case of small random diffusion, the ability to invade comes
from a small flux out of favorable regions; whereas, in the fitness based
avoidance case the ability to invade is a result of a high flux out of unfavor-
able regions. In fact, it would be perfectly reasonable to imagine realistic
cases where both of these mechanisms are operating simultaneously.

It is worth noting that the conclusion of Theorem 2 does not directly
depend on the IGPrey’s random diffusion rate d2. The effect of increasing
d2 is that a larger value of λ may be needed (which in turn will result in
even higher motility in areas of negative fitness) in order for the IGPrey to
be uniformly persistent.

The theoretical insight provided by Theorem 2 is that fast random move-
ment out of “bad” areas can have the same positive effect on long-term
survival as slow random movement out of “good” areas. However, in prac-
tice, the structure of A1 and A2 are generally unknown, so directly verifying
the conditions of Theorem 2 for a particular choice of parameters may be
impossible. It was shown in [20] that there is a threshold value e∗2 (depending
on the other parameters in the system) such that for e2 > e∗2 the IGPredator
can invade the (u∗, 0, 0) equilibrium and the u−w subsystem is permanent.
Furthermore, for e2 > e∗2 but sufficiently close to e∗2, the u−w subsystem has
a unique positive equilibrium that is a global attractor for positive initial
data, i.e. A1 is a single point in function space, (û, 0, ŵ). In this case, the
conditions of Theorem 2 would simplify to: there exists an x ∈ Ω such that
g∗(û(x), ŵ(x)) > 0 which is simple to check after computing û and ŵ.

A sufficient condition for the uniform persistence of the IGPredator was
developed in [20] following an argument along the same lines as the proof
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of Theorem 2. It requires that the IGPredator is able to invade all points
in the A2 attractor of the u − v subsystem which can guaranteed when a
principal eigenvalue of an equation analagous to (25) of Lemma 1 is positive
(see [20] for full details).

4. Numerical Examples

In [11] a three species ODE model for intraguild predation is considered
and two necessary conditions for a positive coexistence equilibrium are de-
rived: the IGPredator has sufficient gains from consumption of the IGPrey
(e3 sufficiently large), and the IGPrey is a superior competitor for the basal
resource. In this section we will demonstrate by numerical simulation that
neither of these conditions is necessary for coexistence in the spatially ex-
plicit model (1)-(2). Furthermore, we will see how fitness based avoidance
strategies employed by the IGPrey effect the existence of these coexistence
states and the population densities at equilibrium.

Our results were proved for a two dimensional domain but are also valid
for one dimension. We will perform our numerical experiments using the
unit interval for the domain Ω to simplify the visualization of results. So-
lutions were obtained using the built-in 1-D parabolic PDE solver pdepe of
Matlab which implements the discretization scheme described in [23]. For
a description of a numerical scheme suitable for a two dimensional domain
refer to [20]. For both numerical experiments we will use a resource produc-
tivity function, r(x), of the form

r(x) = rmin +
rmax − rmin

1 + e−(α(x−1/2))
, (42)

which is a logistic sigmoid function centered at x = 1/2, saturating at the
values rmin on the left of the domain (low quality habitat) and rmax on the
right of the domain (high quality habitat). The parameter α controls the
sharpness of the transition of the transition layer around x = 1/2 and will
be taken large (α = 40) so that this transition is fairly sharp. Throughout
this section we use rmin = 0.6 and rmax = 1.25. For both examples we take
ω1 = 1 which implies that r(x) is also the local carrying capacity of the
resource.

For both scenarios we will assume that the resource diffuses slowly, d1 =
0.0005, so that the effect of the spatially varying habitat quality is not
diffused throughout the domain by a fast moving resource. In order to clearly
compare the ability of the IGPredator and IGPrey to compete for the shared
resource we will assume that attack rates and handling times for the resource
and natural mortality parameters are identical between the IGPredator and
IGPrey (i.e. a1 = a2 = 0.8, h1 = h2 = 0.1, µ1 = µ2 = 0.2, ω2 = ω3 = 0.1)
and only the conversion efficiencies are unequal (e1 6= e2).
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A simple family of motility functions, {Mλ(g∗)}λ≥0, that satisfies condi-
tions (17)-(19) is given by the piecewise linear functions

Mλ(g∗) =

{
d2 for g∗ ≥ 0 ,

−λg∗ + d2 for g∗ < 0 .
(43)

However, this family of motility functions is not twice differentiable at g∗ = 0
as required. Instead we will use the exponentially smoothed approximation
of (43) given by

Mλ(g∗) =

{
d2 for g∗ ≥ 0 ,

−λg∗ed2/(λg∗) + d2 for g∗ < 0 ,
(44)

that still satisfy (17)-(19) and are infinitely differentiable at g∗ = 0.
The first scenario we consider is one where the IGPredator does not gain

significantly from consumption of the IGPrey (e3 small or zero). We assume
that the IGPredator diffuses slowly (d3 = 0.001) and is not efficient enough
to maintain a high density in the low quality habitat (where r(x) ≈ rmin).
The IGPrey is a more efficient competitor for the shared resource (e1 > e2)
and can subsist on the resources in the low quality habitat. Even though
the IGPredator does not directly gain significantly from consumption of the
IGPrey, we will assume that it is highly aggressive towards the IGPrey (a3

large). A good representative for this type of scenario might be mammalian
carnivore systems with multiple predators of varying size competing for a
shared prey [19]. The remaining parameters for this example are:

d2 = 0.05, e1 = 0.9, e2 = 0.4,
e3 = 0.1, a3 = 2, h3 = 0.5.

These parameters result in a u − w subsystem with a positive steady-
state that appears to be a unique stable node for the subsystem (all initial
conditions tried converged to this steady state). The linearized fitness of the
IGPrey at this steady-state is slightly positive in the part of the domain with
marginal resources and low IGPredator density but significantly negative in
the high resource portion of the domain (see Figure 1). For d2 = 0.05 the
IGPrey is unable to invade this equilibrium using only random diffusion
(λ = 0), but can invade and persist using fitness based avoidance (λ = 5).
The resulting positive three species steady state after IGPrey invasion is
pictured in Figure 1. Note that the IGPrey concentrates in the marginal
resource portion of the domain while the IGPredator concentrates in the
higher quality portion of the domain; a pattern observed in many actual
IGP systems in nature[18], [25]. This type of result is also possible with
e3 = 0, the interspecific killing case (the IGPredator is not consuming the
IGPrey, just attacking it).

The second scenario we consider is one where the IGPrey is actually an
inferior competitor for the shared resource (e1 < e2) but is able to invade
and persist using fitness based avoidance by exploiting areas where the IG-
Predator has under exploited the available resources due to over dispersion.
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Figure 1. (Scenario 1) The resource-IGPredator steady
state (top), corresponding linearized IGPrey fitness (middle)
and full coexistence steady state after IGPrey invasion with
fitness based avoidance (bottom). In top and bottom: re-
source is dashed, IGPrey grey and IGPredator solid black.

For this to be possible, we will assume that the IGPredator has a moderate
random diffusion rate (d3 = 0.1) and is only mildly aggressive towards the
IGPrey (a3 small). The parameters used for this scenario are:

d2 = 0.05, e1 = 0.55, e2 = 0.7,
e3 = 0.1, a3 = 0.1, h3 = 0.5.

The results are shown in Figure 2. Due to a higher random diffusion rate,
the IGPredator is much more evenly distributed across the entire domain
in the u − w equilibrium. The result is a very depressed resource level in
the marginal resource area of the habitat. The resulting linearized fitness
of the IGPrey is negative in this area but slightly positive in the high qual-
ity portion of the habitat. This is the case even though it is an inferior
competitor for the resource and it has the extra predation pressure of the
IGPredator. As in Scenario 1, the IGPrey cannot invade with d2 = 0.05 and
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Figure 2. (Scenario 2) The resource-IGPredator steady
state (top), corresponding linearized IGPrey fitness (middle)
and full coexistence steady state after IGPrey invasion with
fitness based avoidance (bottom). In top and bottom: re-
source is dashed, IGPrey grey and IGPredator solid black.

random diffusion alone (λ = 0); however, with sufficient fitness based avoid-
ance (λ = 5) the IGPrey invades and persists by concentrating in the high
quality portion of the habitat. This equilibrium profile might seem odd if
observed empirically: a species that is an inferior competitor concentrating
in a part of the habitat where its competitor and predator is highest density
and coexisting there. In order to understand this type of equilibrium profile
it is essential to not only understand the species interactions but also the
underlying movement mechanisms of all of the species in the system.

5. Discussion

Using the example of an intraguild predation system we have demon-
strated how a fitness based avoidance strategy, namely increasing motility
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in areas of negative fitness, can lead to persistence of the IGPrey in the
system.

However, regardless of the community structure, this same general prin-
ciple can always facilitate an invader to increase when rare as long as there
is one favorable spot in the habitat by damping negative contributions to
the relevant principal eigenvalue from areas in the domain where conditions
are unfavorable. As pointed out earlier, this has a similar effect as decreas-
ing a random diffusion rate; but, has very different interpretations. A small
diffusion rate allows increase when rare by limiting losses resulting from flux
from good regions to bad regions. The mechanism proposed herein allows a
species to increase when rare by increasing the flux out of bad regions into
good regions.

This might lead one to compare fitness based avoidance to a behavior
like advection up fitness gradients, but there are important differences from
the perspective of a mechanistic derivation of the movement behavior. The
use of fitness based avoidance does not assume that organisms have the
ability to track gradients at all, only the ability to assess local conditions
for suitability and adjust the rate at which they depart the location in
a random direction. The net effect at the aggregate population level can
be decomposed into a taxis (gradient tracking) and kinesis (variable rate
random motion) component:

∆ [M(g)v] = ∇ ·
[
M(g)∇v + vM ′(g)∇g

]
but, at the organism level all movement is in random directions.

When strong fitness based avoidance is combined with moderate random
diffusion, the resulting asymptotic population distribution will tend to have
very low density in regions where fitness is negative and concentrate with
fairly flat, homogeneous profiles in areas with positive fitness (due to the
moderate random diffusion in these areas). For contrast, a species that uses
only a very small random movement will also have low density in areas of
negative fitness, but the density where fitness is positive will much more
closely track the shape of the fitness curve itself. Ecologists doing empirical
species distribution studies might be able to exploit the marked differences
between these two distributions to more accurately infer underlying dispersal
mechanisms.

Given a heterogeneous environment, the mechanism of dispersal for species
in an ecosystem can play an important role in the types of asymptotic dis-
tributions of population densities observed and whether or not coexistence
can occur. We believe that the framework of cross-diffusion systems is a
very powerful tool for analyzing the interplay between species interactions
with dispersal mechanisms. The system analyzed in this work is fairly sim-
ple from the perspective that only one species is dispersing in a non-random
fashion. There is ample room to develop this theory further and extend this
type of analysis to more complex cases in the future.
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